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Abstract

This paper presents a new method of spatially decomposing vibration patterns in real time into their
travelling and standing parts. This method creates a localized parametric model describing the nature of the
developed vibrations leading to a scalar measure of the travelling to standing waves ratio. Despite being
rather simple compared with spatial Fourier transform that yields space-averaged results, the current
method seems superior for a localized description. Due to its superior localization, the decomposition
conveys important insight and valuable information for vibrating structures that can be used for
identification, diagnosis and for control purposes of ultrasonic motors and rotating discs. Several features
make the proposed method advantageous over existing schemes, in particular when the number of deployed
sensors is small and confined to a small region. It is shown that the presented approach differs from the
commonly used Fourier-based methods in several ways: (a) the proposed method does not require equally
distributed sensors and does not require a spatially complete coverage of the analyzed domain nor does it
require equally spaced sensing elements; (b) the algorithm makes neither use of the spatial wavelength nor
requires its estimate to curve-fit the instantaneous spatial deformation patterns; (c) the method is most
suitable for cases where a localized pattern needs to be estimated and is therefore robust to imperfections in
the vibrating structure; (d) the presented formulation has a recursive form that is suitable for real-time
implementations by a digital signal processor.
r 2003 Elsevier Ltd. All rights reserved.

1. Background and introduction

Travelling and standing waves need to be separated when dealing with translating or rotating
media and when such vibration patterns are to be created in a structure [1,2]. This separation is
also required when trying to separate travelling deformation patterns in a rotating structure [3].
The deformation and stress waves progressing in a vibrating structure can often be decomposed
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according to their wavelengths, frequency and direction of progression. The separation of
measured deformations into their wavelength components requires simultaneous spatial
information, typically obtained from an array of sensors or from a continuously scanning sensor
[3,4]. The measured signals are commonly transformed to obtain the wavelength/wave-number
domain using a Fourier transformation [3] and thus the employed method has to comply with
some constraints and be prone to errors that are associated with this transformation. This paper
develops an approach that does not make use of Fourier transformations and thus some of the
limitations that are often associated with these methods are removed. The proposed method can
serve as the basis for a real-time estimation method of the sought temporal and spatial properties
while not being limited by the spatial (Nyquist) sampling criterion nor does it require equal
spacing between sensing elements. Although lightly damped structures are characterized by their
eigenvectors being standing waves in space, the combination of several modes, can give rise to
travelling waves [4–9]. Travelling waves occur most naturally in cases where there are close
natural frequencies as in rotationally periodic structures, and when an external excitation of
motion encourages such response patterns [5–7]. Travelling waves are also being used in ultrasonic
motors where two mode shapes with a nearly identical natural frequency [1] are driven to create a
travelling pattern. The two close modes can potentially form a mixture of travelling and standing
waves (see [5, pp. 225–229; 10]), while a pure travelling motion develops when the correct spatial
and temporal driving signals are being used. In ultrasonic motors, pure travelling waves is desired
but as the device are predominantly treated in an ‘‘open-loop’’ manner thus effectively ignoring
the effect of external loading [2], local imperfections cause deterioration of the performance [8]. A
tool such as the presented one can greatly improve the performance by allowing one to tune the
applied excitation signals to provide an optimal ratio of travelling to standing waves.
Rotating machines have axisymmetric components that may develop travelling response

patterns (with respect to inertial or body co-ordinates) as a clear indication of a particular
structural defect or due to specific external loading or excitation [5–7]. Rotating machines are
known to whirl in co- and counter-rotating directions while rotating discs deform in a shape that
is a combination of several different wavelengths that may also travel or stand in space. The
detection and separation of such patterns in real time requires an array of sensors [3,6,7] to allow
for a spatial Fourier transform followed by a time–frequency transformation (or creation of a
speed–frequency map, often addressed as Zmod by the aeroengine industry). The four-fold
separation in Ref. [3] is applied to decompose the structural response into its frequency,
amplitude, wavelength and direction of travel of the vibration pattern. A different approach is
shown in Ref. [11] where continuous scanning provides the spatial information, but this method is
impractical for real devices and can be only used in the laboratory.
The deployment of a suitable array of sensors is often impossible. Thus a method that is based

on measurements taken on a sector or a few sectors of a rotating disc is desirable. A localized
deployment of sensors has the advantage that it provides the local properties of the vibrating
structure and is less sensitive to slower vibrations having long wavelengths. This is contrary to the
averaging action of the Fourier transformation whose input is obtained by measuring on the
entire circumference of say a rotating bladed-fan in a jet engine. The proposed method can
provide a real-time diagnostics means or serve in a closed-loop control system attempting to
generate travelling waves for propulsion purposes or in applications where spatially uniform
amplitude is desired [1] for the reduction of sliding friction [2].
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The paper is structured as following: in Section 2 the proposed method is outlined and the
mathematical properties of mixed standing and travelling waves are outlined: curve-fitting
procedures both in time and space are developed and explained; in Section 3 numerical and
experimental results of the proposed algorithm are shown and analyzed; Section 4 concludes the
paper with a summary.

2. Decomposition and signal processing of vibration waves

In this section it is shown how a vibration pattern can be decomposed into its travelling
components. A typical laboratory set-up is depicted in Fig. 1 where an array of sensors is
deployed circumferentially to simultaneously measure the vibration signals from all the sensors. In
this figure, a single wavelength is seen to prevail (on the right) and an electromagnetic excitation
device is used to stimulate the vibration patterns in the rotating structure. The main result of this
paper will show that for a dominant vibration pattern spatially characterized as a sinusoid, an
ellipse will be created from the measured data in the complex domain. This ellipse represents the
sought travelling wave properties and will be used to extract these features in a numerically
efficient manner. Both an analytical, non-parametric approach via the Hilbert transform and a
smoother parametric adaptation method, are presented as a means to extract the instantaneous
amplitude and phase along the space co-ordinate.

2.1. Mathematical decomposition of spatio-temporal information into standing and travelling waves

Consider a vibration wave progressing in a structure along a single direction in space, (namely
the x direction, but in Figs. 1 and 2 this will be the angular direction y). Such a vibrating pattern
having a single temporal frequency, o; and a single wavelength in space, l ¼ 2p

k ; can be described
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Fig. 1. Left: A deformed rotating disc excited by an electromagnetic device. Right: A strip (segment) ‘‘visible’’ by the

array of sensors, shown is a uniform wavelength and a uniformly spaced sensor array.
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mathematically as

wðx; tÞ ¼ AðkxÞ cosot þ BðkxÞ sinot þ Rðbx; etÞ; ð1Þ

where AðkxÞ; BðkxÞ are position-dependent amplitude functions and k is the wave number,
Rðbx; etÞ is a residual function having typically a long wavelength characterized by b and a
low-frequency e{o:
Often, an external source that serves as a phase reference is present. For example in rotating

machines the phase is referenced to the rotational position of the shaft. Another example for an
external phase reference is the sinusoidal excitation signal driving ultrasonic motors.
In order to retrieve the standing and travelling parts of the measured response, one has to

compute AðkxÞ;BðkxÞ with the appropriate phase correction. Let the amplitudes be functions of a
single wavelength, and therefore harmonic functions of space, e.g.,

AðkxÞ ¼ A1 cos kx þ A2 sin kx; BðkxÞ ¼ B1 cos kx þ B2 sin kx: ð2Þ

By using trigonometric identities, Eqs. (1) and (2) can be recast in the form

wðx; tÞ ¼ 1
2
ððA1 þ B2Þ cosðot � kxÞ þ ðB1 � A2Þ sinðot � kxÞ þ?

ðA1 � B2Þ cosðot þ kxÞ þ ðB1 þ A2Þ sinðot þ kxÞÞ: ð3Þ

Eq. (3) separates the parts travelling in the positive and negative directions (having the arguments
ðot � kxÞ; ðot þ kxÞ respectively).
A similar decomposition can be achieved by defining

#WðkxÞ ¼ AðkxÞ þ iBðkxÞ: ð4Þ

The complex amplitude approach separates the in-phase (real) and in-quadrature (imaginary)
components and paves the way to the Hilbert-transform-based decomposition.
Substituting Eq. (2) in Eq. (4), one has

2 #WðkxÞ ¼A1ðeikx þ e�ikxÞ � iA2ðeikx � e�ikxÞ

þ iB1ðeikx þ ie�ikxÞ þ B2ðeikx � ie�ikxÞ ð5Þ
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Fig. 2. A segment of a vibrating disc having a non-uniform wavelength and a non-uniformly spaced sensor array.
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or rearranging

#WðkxÞ ¼ Wþe
ikx þ W�e

�ikx; ð6Þ

where

Wþ ¼ 1
2
½ðA1 þ B2Þ þ iðB1 � A2Þ�; W� ¼ 1

2
½ðA1 � B2Þ þ iðB1 þ A2Þ�: ð7Þ

Here Wþ represents the amplitude (and phase, being complex) of the wave travelling in a
positive ðþxÞ direction while W� represents the part progressing in the negative direction ð�xÞ:
By inspecting the coefficients of Eqs. (7) and (3) it can be deduced that they carry the same

information.
Indeed Eq. (6) as plotted in Fig. 3, shows that the curve traced by #WðkxÞ in the complex plane is

an ellipse whose properties represent the sought nature of the vibrating pattern. When a pure
travelling wave exists, say in the positive direction, only Wþ will be non-zero as evident from
Fig. 3, the ellipse will become a pure circle.
The spatial distribution of the in-phase ðcosotÞ and in-quadrature ðsinotÞ components

determines the ratio between the standing and travelling part and the direction of travel in space.
A scalar measure that determines how far one is from having pure travelling or standing waves is
adopted from Antenna design and is called the standing waves ration (SWR). One defines this
number as

SWR ¼ ðjWþj þ jW�jÞ=ðjWþj � jW�jÞ ð8Þ

and it can be seen that it becomes unity ðþ=�Þ for pure travelling waves and tends to infinity for
standing waves when jWþj ¼ jW�j:
Often the wavelength of the vibrating pattern is not known with sufficient accuracy and the fast

and accurate estimation of AðkxÞ;BðkxÞ must rely on a two-stage approach as described below. In
the first part the AðkxÞ;BðkxÞ coefficients are curve-fitted by two alternative time-domain methods
and in the second stage the local spatial properties are found by curve-fitting an ellipse to the
instantaneous spatial distribution of deformations.
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Fig. 3. An ellipse representing a mixture of standing and travelling waves composed of two waves moving in opposite
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2.1.1. Fitting the instantaneous amplitude and phase

The time signal measured from an array of sensors need to be processed in order to obtain the
instantaneous in-phase and in-quadrature (or alternatively the amplitude and phase) components.
Two approaches are presented: The first approach makes use of the Hilbert transform to show
analytically that a space-dependent analytic signal [10,12] of a travelling wave, allows us to obtain
the in-phase and in-quadrature components as a function of the space co-ordinate, x: The second
approach is more suitable for cases where the excitation frequency, o; is known and therefore a
recursive least-squares approach is employed with smoother and more robust performance than
the (more general) Hilbert-transform-based method.

2.1.2. The Hilbert-transform-based approach
In order to obtain the relative phase information as a function of space, the distributed response

is converted into an analytic signal form [12]. By application of the Hilbert transform to Eq. (1),
one obtains

H½wðx; tÞ� ¼ �AðkxÞ cosot þ BðkxÞ sinot þH½Rðbx; etÞ�; ð9Þ

where H½	� represents the Hilbert transform operating in the time domain. Rðbx; etÞ is assumed to
possess a long wavelength in space and is thus considered as a constant for a space-localized
approximation.
The analytic response (signal) is defined as

*wðx; tÞ ¼ wðx; tÞ þ iH½wðx; tÞ� ð10Þ

and when applied to Eqs. (1) and (2) one obtains (combining Eq. (1) + i� Eq. (9)),
*wðx; tÞ ¼ ðð1� iÞAðkxÞ þ ð1þ iÞBðkxÞÞeiot þ *R; ð11Þ

where *R ¼ R þ iH½R�; or simplifying

*wðx; tÞ ¼ ð1� iÞfðAðkxÞ þ iBðkxÞÞeiot þ *R=ði� 1Þg: ð12Þ

Dividing Eq. (11) by ð1� iÞeiot (which is in effect a de-modulation process) and ignoring the
residual term temporarily, one transforms the obtained expression into the wave-attached
co-ordinate system.
Once Eq. (2) is substituted into Eq. (12) one obtains the same expressions as obtained in

Eqs. (6) and (7) and thus the Hilbert transform can be used to extract the required information
about the instantaneous amplitudes of the positive and negative direction.
The actual Hilbert transform for the proposed application, makes use of a finite impulse

response (FIR) time-domain filtering approach (see Ref. [12]) to create an analytical signal from
all the involved sensors. Rather than obtaining a continuous function of x; a space-sampled
version is obtained in this method, but it is important to note that the Hilbert transform provides
an instantaneous estimate for each and every sensor and thus a space-sampled version of the
complex amplitude is created to which an ellipse can be curve-fitted.

2.1.3. The recursive least-squares approach for amplitude-fitting
An alternative approach to the time-domain Hilbert transform uses a parametric model with

the assumption that the temporal frequency, o; is known. The adaptive least-squares approach

ARTICLE IN PRESS

I. Bucher / Journal of Sound and Vibration 270 (2004) 341–359346



uses pmax time samples taken at the nth location xn (see Fig. 4) with each sample obeying

wðxn; tpÞ ¼ AðkxnÞ cosotp þ BðkxnÞ sinotp þ C;

n ¼ 1;y;N; p ¼ 1;y; pmax: ð13Þ

For each measured location one is able to extract the scalars AðkxnÞ;BðkxnÞ; by collecting pmax

such equations (for each of the N sensors) to obtain

wðxn; 0Þ

wðxn; t1Þ

^

wðxn; tpmax
Þ

0
BBB@

1
CCCA ¼

0 1 1

cosot sinot1 1

^ ^ ^

cosotpmax
sinotpmax

1

2
6664

3
7775

AðkxnÞ

BðkxnÞ

Cn

0
B@

1
CA: ð14Þ

Eq. (14) is not suitable for an on-line implementation and is thus not capable of tracking the
variation of the vibrating pattern. A recursive estimator in therefore suggested for each sensed
location [10] as

yqþ1;n ¼ yq;n þ Lq;nðwq;n � #wq;nÞ; ð15Þ

where #wq;n ¼ cTq yq;n is the predicted response at the nth sensor, and wq;n is the measured response.
The unknown vector of parameters at time instant tq ¼ qDt is yq;n ¼ fAqðkxnÞ BqðkxnÞ Cq;ng: One
also defines cq ¼ ðcosotq sinotq 1Þ that can be pre-computed since o is known.
The gain vector Lq;n is computed so as to minimize the error function

Pq
k¼1 lq�kðwk;n � #wk;nÞ

2

[13]. The selection of the forgetting factor l weights the old data against the newly acquired
information and controls the tracking capability of the algorithm. It can be shown [10,13] that the
adaptive gain matrix for the nth location obeys Ref. [13], giving

Lq;n ¼ Pq�1cq=ðlþ cTq Pq�1cqÞ; ð16Þ

where by updating in parallel to Eq. (15)

Pq ¼
1

l
Pq�1 �

Pq�1cqc
T
q Pq�1

lþ cTq Pq�1cq

 !
: ð17Þ

Pq has to be initialized as Pq ¼ Z2I where Z is close to unity. In order to maintain the tracking
ability of the algorithm, Pq needs often to be reset to its initial value [10].
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Having measured the response one is able to track both the amplitude and phase with the
above-mentioned algorithm as illustrated in a block diagram form in Fig. 5 and is demonstrated
in Fig. 6.
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Fig. 5. Flowchart of the real-time travelling wave estimation algorithm.
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2.2. Estimation of the travelling and standing components from an array of sensors

Consider an array of sensors deployed along the direction of travel of a deformed state as
shown in Fig. 2.
In order to determine whether a wave is propagating or standing in space, sensors should be

placed at two spatial locations (in the case of rotating machinery) or more. Indeed, in rotating
machinery, two sensors that are spaced a 1/4 of wavelength apart are being used to distinguish co-
and counter-rotating whirl patterns of bending shafts, as shown in Ref. [3]. Unfortunately two
sensors may prove insufficient in terms of spatial resolution and the resulting estimate may be
misleading in presence of measurement noise or when the motion is composed of several
wavelengths. In reality, the deformation pattern may be a combination of several wavelengths
which gives rise to a deformation that is no longer described by a single sinusoid. For this reason
more than two sensors are often employed on rotating discs to allow for separation of different
wavelengths. A different approach makes use of a scanning, non-contacting sensor (e.g.,
Refs. [4,11]) that can provide a spatially dense grid of measurements satisfying the spatial
resolution requirements. The continuous approach is not suitable for real-time applications since
different points in space are measured at different times with this method. The continuous
scanning approach (see Ref. [4]) uses a single scanning sensor that must have a clear optical path
to the structure and is thus often impractical.
As the wavelength is usually unknown while the temporal frequency is dictated by the external

forcing mechanism and is thus known, it proves convenient to eliminate k and t from the
formulation by a two-step approach. In the first part that was described above, the time
dependence is eliminated while the second stage eliminates the spatial frequency (wave vector) k:

2.2.1. Fitting an ellipse to the complex amplitude

It can be shown (e.g., Ref. [3]), that for a single wavelength, a plot of AðkxnÞ versus BðkxnÞ
would generally yield an ellipse. In the case of standing waves, the ellipse will degenerate into a
straight line while pure travelling waves produce a perfect circle. Having measurements at several
locations along x; one is able to use the above-mentioned procedure to compute several pairs of
co-ordinates AðkxnÞ; BðkxnÞ; these measured pairs should reside on an ellipse. In order to curve-fit
the properties of the obtained ellipse, a parametric description of a general non-canonical ellipse is
being used, namely

bðBðkxnÞ � B0Þ
2 þ aðAðkxnÞ � A0Þ

2 þ cAðkxnÞBðkxnÞ ¼ 1; ð18Þ

where A0;B0 determine the centre of the ellipse and a; b; c are the parameters to be determined.
For sake of mathematical convenience, Eq. (18) can be transformed into a bi-linear form as

AðkxÞ � A0

BðkxÞ � B0

 !T
d11 d12

d21 d22

" #
AðkxÞ � A0

BðkxÞ � B0

 !
¼ r2; ð19Þ

where a scaling parameter r is used. This parameter scales the overall size of the ellipse but does
not change the proportions of the standing and travelling waves. It can be shown, by expanding
Eq. (19) (with an appropriate selection of r2) that the measurements, ðAðkxnÞ;BðkxnÞÞ; n ¼
1;y;N; can be used to form a linear set of equations, in some new (intermediate) parameters
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ai; i ¼ 1;y; 5: The coefficient matrix in this equation contains powers of the now known
co-ordinate pairs (amplitudes), AðkxnÞ;BðkxnÞ:
Since d12 ¼ d21; five unknowns remain, d11; d12; d22;A0;B0: Defining

a1 ¼ d11; a2 ¼ d22; a3 ¼ 2d12; a5 ¼ �2d12A0 � 2d22B0;

r2 ¼
A0

B0

 !T
d11 d12

d12 d22

" #
A0

B0

 !
; ð20Þ

one can rewrite Eq. (19) as

Aðkx1Þ
2 Bðkx1Þ

2 Aðkx1ÞBðkx1Þ Aðkx1Þ Bðkx1Þ

^ ^ ^ ^ ^

AðkxNÞ
2 BðkxNÞ

2 AðkxNÞBðkxNÞ AðkxNÞ BðkxNÞ

2
64

3
75

a1
^

a5

0
B@

1
CA ¼ r2

1

^

1

0
B@

1
CA: ð21Þ

Dividing Eq. (21) by r2; one shrinks the ellipse in size without affecting its proportions and one
can solve for a1;y; a5 in the least-squares sense [14]. From Eq. (20) one can now compute the
co-ordinates of the centre of the ellipse ðA0;B0Þ as

A0 ¼ ða3a5 � 2a2a4Þ=ð4a1a2 � a23Þ; B0 ¼ ða3a4 � 2a1a5Þ=ð4a1a2 � a23Þ: ð22Þ

The semi-minor/major (see Fig. 3), can be used to decompose a typical ellipse into its positive and
negative travelling components. It can be shown that [15]

jWþj ¼ 1
2ðð1=

ffiffiffiffiffiffiffiffiffi
lmax

p
Þ þ ð1=

ffiffiffiffiffiffiffiffi
lmin

p
ÞÞ; jW�j ¼ 1

2ðð1=
ffiffiffiffiffiffiffiffi
lmin

p
Þ � ð1=

ffiffiffiffiffiffiffiffiffi
lmax

p
ÞÞ; ð23Þ

where lmin; lmax are the eigenvalues of the weighting matrix in Eq. (19), i.e., the solution of

lf ¼
2a1 a3
a3 2a2

" #
f: ð24Þ

The eccentricity of the ellipse is commonly defined by the dividing the length of the semi-major by
the length of the semi-minor,

e ¼ ðjWþj � jW�jÞ=ðjWþj þ jW�jÞ: ð25Þ

The last term is the reciprocal of the commonly used SWR, which was previously defined. It is
clear that e is bounded between �1pep1 with e ¼ �1 indicating pure travelling waves in the
negative x direction, e ¼ 71 indicates a pure travel towards the positive or negative direction and
e ¼ 0 for completely standing waves. Eq. (23) can be substituted in Eq. (25) to yield,

e ¼ ðð1=
ffiffiffiffiffi
l1

p
Þ � ð1=

ffiffiffiffiffi
l2

p
ÞÞ=ðð1=

ffiffiffiffiffi
l1

p
Þ þ ð1=

ffiffiffiffiffi
l2

p
ÞÞ ¼ ð

ffiffiffiffiffi
l2

p
�

ffiffiffiffiffi
l1

p
Þ=ð

ffiffiffiffiffi
l2

p
þ

ffiffiffiffiffi
l1

p
Þ: ð26Þ

For the purpose of replicating the three cases of pure negative of positive travelling waves or pure
standing wave, the function (assuming a1a� a2)

*e ¼ ðl2 � l1Þ=ðl2 þ l1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 þ ða1 � a2Þ

2
q

=ða1 þ a2Þ ð27Þ

serves a similar purpose, especially in cases where the travelling waves part is to be maximized
using a real-time control implementation or for monitoring applications. This form does not
require the solution of Eq. (24) and is thus faster to compute.
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Indeed Eqs. (21) and (27) can be realized in real-time since only five parameters need solving
Eq. (21) can be solved in the least-squares sense by a direct approach or by updating the QR
decomposition [14] of Eq. (21) that is constructed with the newly estimated AðkxnÞ;BðkxnÞ:
Fig. 5 summarizes the required set-up and the parts of the algorithm leading to the separation

of the travelling from the standing waves. In this figure, the flow of data from the measured
sensors via the parallel implementation of the time-domain adaptive curve-fit to the fit of the
ellipse yielding the sought ratio is visualized.

3. Numerical and experimental investigation of the algorithm

In order to test the mentioned algorithm, a finite element model of an axisymmetric structure
was built. The model was constructed to represent a test rig that was utilized in the laboratory and
which is depicted in Fig. 7. Several key components are identified, these being an axisymmetric
ring structure and the three piezoelectric forcing devices.
The model was used to create spatially discretized equations of motion of the form

M .q þ D ’q þ Kq ¼ Fc cosot þ Fs sinot: ð28Þ

The external forces, Fc;Fs represent three excitation devices (See Fig. 7) that were phased in
time to create the appropriate proportions of the standing and travelling waves. The proportions
of the model were designed to possess several natural frequencies in the useful bandwidth of the
piezoelectric actuators ð20 kHzÞ: Two of the mode shapes that appear later in the experiments are
depicted in Fig. 8. Each of the presented mode shapes has a twin mode shape (eigenvector) having
a close natural frequency (that would have been identical under perfectly symmetric boundary
conditions).
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Fig. 7. Laboratory test rig after which the finite element model was built.
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3.1. Travelling wave estimation algorithm—a numerical example

The finite element model consisting of 1500 degrees of freedom was simulated where the input
vector consisted of a vector of harmonic forces. The amplitude and phase of this excitation vector
were changed during the simulation in order to assess the tracking capabilities of the algorithm
that is diagrammatically illustrated in Fig. 5.

3.1.1. Performance of the amplitude and phase fitting method

The fitted ellipse, the eccentricity ratio, (which is a direct indication for the standing/travelling
waves ratio) and the instantaneous centre of the ellipse are all indicative of the vibration state. The
ability of the algorithm to track the change in these parameters is illustrated via a comparative
estimate of the instantaneous enveloped computed by j *WðxÞj or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðkxÞ þ B2ðkxÞ

p
: Fig. 6 shows

the tracking capability of the in- and out-of-phase components by comparison with the measured
signal. Fig. 6 illustrates quite clearly how the proposed algorithm is capable of tracking the
standing/travelling wave ratio during a transient while Fig. 9 shows the time evolution of the fitted

ARTICLE IN PRESS

Fig. 8. Finite element model showing two mode shapes that were excited in the experiment.

( )Ŵ

(  )Ŵ

Fig. 9. Evolution of the fitted ellipse versus time as estimated by the algorithm. Only one force transition is shown here

for clarity.
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ellipse during a transient. It is worth mentioning that the Hilbert-based envelope oscillates due to
the presence of slow vibrations causing an offset in the analyzed time frame.
In this example the ring was at rest when the excitation was activated. The building of the ellipse

is evident from Fig. 9 (shown every few samples for clarity), it can be seen that initially the
amplitude of vibration is small and so is the fitted ellipse that grows with the build-up of vibration
levels. Fig. 10 shows the estimate eccentricity and the tracking capability of the algorithm during
transients. The eccentricity, as was mentioned before is a direct measure of the ratio between the
travelling and the standing vibration waves, while the extent of the ellipse reflects the amplitude.
As the algorithm can use a small number of sensors that occupy a part of a wavelength, the

algorithm was used in the simulated examples to fit an ellipse based on six sensors. The actual
algorithm fits, at any given instant of time, an ellipse and finds the centre of this ellipse as shown
in (left side of) Fig. 11. Since the vibrating pattern is not made of a single wavelength, the residual
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Fig. 10. Eccentricity ratio versus time as estimated by the algorithm (Eq. (24)). Note that the transients are genuine due

to the sudden change in the external forces.
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Fig. 11. Measured amplitudes and the fitted ellipse—simulation. On the right a closer view of the ellipse centre as it

evolves in the recent history with a second ellipse fitted to it.
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Rðbx; etÞ moves with time and indeed the right part of Fig. 11 shows that it traces a smaller ellipse
that can be fitted with the same algorithm to the history of the centre of the ellipse. This smaller
ellipse represents the added low frequency (long wavelength) vibration, which is in fact the
residual Rðbx; etÞ:

3.1.2. Identifying locally travelling waves regions—a simulated example
In order to illustrate the advantage of the proposed algorithm in the estimation of local

phenomena, a model of the structure in Figs. 7 and 8 was used in a simulation with slight
asymmetry in the boundary conditions (as was observed in the laboratory test-rig). The excitation
pattern that was chosen consisted of three sinusoidal forces with different amplitudes and phases.
The excitation patterns were abruptly changed at discrete time instances to create a transient
phenomenon of the travelling waves as was shown above. In the simulated study, simulated
sensors were placed at an equal radius along the circumference of the ring (see Figs. 1 and 2). At
rest, the spatial vibrating pattern is a three-dimensional thin ring (line) while under vibration, this
ring deforms. Due to the asymmetry, the spatial pattern no longer consists of a single wavelength,
and indeed plotting the complex amplitude as in Fig. 3, the observed curve in Fig. 12 is no longer
an ellipse as it is composed of several ellipses each characterized by different parameters. The
ability of the proposed algorithm to use a local measure is illustrated in Fig. 12 where the local fit
of an ellipse to region II (see Fig. 12) is in good agreement with region II of Fig. 13 as it clearly
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Fig. 12. A plot of AðkxnÞ versus BðkxnÞ showing a locally fitted ellipse—simulated structure.

Fig. 13. Sequence of deformation states to mimic animation for visualizing travelling waves around the same time

instant as in Fig. 12.
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shows travelling waves. Moreover, the nearly straight line obtained in region I of Fig. 12 agrees
with region I of Fig. 13 that shows clearly locally standing waves. Fig. 13 presents a succession of
deformation states to mimic an animation of the deformation status as was simulated by Eq. (28).

3.2. Experimental study of the algorithm

In the experimental study, the system that is depicted in Fig. 5 was used. A laser vibration
sensor measured the response at several points using the set-up that is shown in Fig. 14. A second
experiment used five closely spaced sensors.

ARTICLE IN PRESS

Fig. 14. The experimental system showing the vibrating ring and the measuring laser sensor.
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Experiments were conducted under several excitation conditions giving rise to several
combinations of standing/travelling waves. The measurements were performed on a segment of
the ring and the results are plotted in Figs. 15–17.
Fig. 15 shows the response as a sequence of deformation states (mimicking an animation) using

an excitation frequency yielding a mode shape that closely resembles the simulated mode shape
one on the right side of Fig. 7. Changing the relative phase between the three excitation devices
created a standing waves pattern (Fig. 15, top) to a nearly pure travelling waves (bottom) through
an intermediate mixed standing/travelling stage (middle). The pure standing waves here are clearly
defined with the appearance of a nodal point. Fig. 17 (which is measured on a part of the disc)
shows the complex amplitude and the fitted ellipse as was described in the paper. The ellipse that
was obtained shows that one has a mixture of travelling and standing waves while for the standing
waves case, a straight line (not shown) was obtained. Fig. 16 shows three additional excitation
patters at a difference frequency, this time giving rise to a differently shaped travelling and
standing waves respectively. Once more the standing wave showed an in-phase motion of all the
surface points with a clear indication of non-movable nodal points. It is worthy of mentioning
that (as can be seen in Figs. 15 and 16), travelling waves create a nearly uniform distribution of
amplitudes in space.
Often, a non-uniform behaviour along the circumference can be observed. Indeed, Figs. 18 and

19 illustrates clearly the importance of the proposed approach in such a case. In Fig. 18, a segment
of the vibrating rings in which both travelling and standing patterns co-exist in different regions of
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Fig. 15. Measured vibration response pattern on a section of the ring structure shown in Fig. 5. The three piezo-

actuators have a relative temporal phase angle of 0�; 30� and 110� and the excitation frequency 2280 Hz:
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the structure. Region A in Fig. 18 was measured using five sensors and it can clearly be seen that
there is a significant amount of travelling waves present in this part. This conclusion can also be
made by inspection of the left graph in Fig. 19. This plot makes use of the ellipse fit at a certain
instant of time, also shown are the five sensors that are clearly sufficient to produce and estimate
of the travelling waves ratio of e ¼ �0:49: On the other hand region B in Fig. 18, clearly exhibits
standing waves. The five sensors deployed over this region were sufficient to demonstrate in the
right side plot of Fig. 19 that the fitted ellipse has degenerated into a straight line representing
pure standing waves with an eccentricity eE0; that was obtained. The importance of Figs. 18 and
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Fig. 17. Measured and fitted amplitudes of a mixed travelling and standing wave along a ring segment. Excitation

frequency 2280 Hz:

Fig. 16. Measured vibration response pattern under a relative temporal phase angle of 30�; 50� and 160� between the
exciters. Excitation frequency 10518 Hz:
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19 is two-fold, first it shows why an averaging approach such as the spatial Fourier transform may
be misleading and second it demonstrates how a small number of local sensors could be
advantageous in this case.

4. Conclusions

A real-time signal processing method is presented that is aimed at the identification of standing
and travelling waves using a relatively small number of sensors deployed along a part of a
structure. The algorithm can be used in several applications, such as ultrasonic motors, and to
decompose vibration patterns in rotating machinery. The algorithm works in real-time, making
use of newly developed geometric and mathematical expressions that are directly related to the
phenomenon of travelling waves. The algorithm was successfully demonstrated via simulation and
experiments demonstrating its advantage in estimating localized deformation patterns.
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Fig. 19. Measured response and curve-fitted ellipse in two regions. Left: Region A in Fig. 18 showing travelling waves,

e ¼ �0:49: Right: Region B in Fig. 18 showing standing waves, e ¼ 0:01:

Fig. 18. Measured response (using a laser-scanning sensor) at several neighbouring time instances. Shown is a segment

of the ring in Fig. 5 with two sets of sensors (regions A and B). Excitation frequency 3625 Hz:
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